如何申请美国电气工程专业

一、电气工程的定义

传统的电气工程定义为用于创造产生电气与电子系统的有关学科的总和。此定义本已经十分宽泛,但随着科学技术的飞速发展,21世纪的电气工程概念已经远远超出上述定义的范畴,斯坦福大学教授指出:今天的美国电气工程涵盖了几乎所有与电子、光子有关的工程行为。本领域知识宽度的巨大增长,要求我们重新检查甚至重新构造电气工程的学科方向、课程设置及其内容,以便使电气工程学科能有效地回应学生的需求、社会的需求、科技的进步和动态的科研环境。   

电气工程(Electrical Engineering,简称EE)是现代科技领域中的核心学科之一,更是当今高新技术领域中不可或缺的关键学科。例如正是电子技术的巨大进步才推动了以计算机网络为基础的信息时代的到来,并将改变人类的生活工作模式等等。   

从某种意义上讲,电气工程的发达程度代表着国家的科技进步水平。正因为此,电气工程的教育和科研一直在发达国家大学中占据十分重要的地位。

二、电气工程在美国的教学

电气工程是一门用于创造产生电气与电子系统的有关学科的总和。21世纪的电气工程概念已经远远超出上述定义的范畴,斯坦福大学教授指出:今天的电气工程涵盖了几乎所有与电子、光子有关的工程行为。中美两国学校在电气工程专业开设的情况有所差异,国内根据专业的研究对象有更细化设置,比如北京理工大学,开设的机电学院、光电学院、信息与电子学院、自动化学院,其研究内容都是电气工程专业所研究内容。再比如清华大学,开设有信息科学技术学院,该学院下设的电子工程系、自动化系、微电子与纳电子系、微电子学研究所等也都是电气工程研究的内容;而美国开设相比国内,比较简单,统一开设在工学院下开设电气工程系,而在电气工程系下设有通信、信号、电子、控制等研究方向。

三、影响电气工程的主要因素

今后若干年内对电气工程EE发展影响最大的主要因素包括:   

1、信息技术的决定性影响。信息技术广泛地定义为包括计算机、世界范围高速宽带计算机网络及通讯系统,以及用来传感、处理、存储和显示各种信息等相关支持技术的综合。信息技术对电气工程的发展具有特别大的支配性影响。信息技术持续以指数速度增长在很大程度上取决于电气工程中众多学科领域的持续技术创新。反过来,信息技术的进步又为电气工程领域的技术创新提供了更新更先进的工具基础。   

2、与物理科学的相互交叉面拓宽。由于三极管的发明和大规模集成电路制造技术的发展,固体电子学在20世纪的后50年对电气工程的成长起到了巨大的推动作用。电气工程与物理科学间的紧密联系与交叉仍然是今后电气工程学科的关键,并且将拓宽到生物系统、光子学、微机电系统(MEMS)。21世纪中的某些最重要的新装置、新系统和新技术将来自上述领域。   

3、快速变化。技术的飞速进步和分析方法、设计方法的日新月异,使得我们必须每隔几年对工程问题的过去解决方案重新全面思考或审查。这对我们如何聘用新的教授,如何培养我们的学生有很大影响。

四、美国电气工程专业分支

1 通讯与网络

通讯与网络是现在非常热门的学科方向之一,这其中包括无线网络与光网络,移动网络,量子与光通讯,信息理论,网络安全,网络协议与体系结构,交互式通讯,INTERNET运行性能建模与分析,分布式告诉缓存系统,开放式可编程网络,路由算法,多点传送协议,网络电话学,带宽高校调制与编码系统,网络差错控制理论及应用,多维信息与通讯理论,快速传送连接,服务质量评价,网络仿真工具,网络分析,神经网络,信息的特征提取传送储存及各种介质下的信息网络化问题,包括大气空间光纤电缆等介质等。此研究方向与信号处理,计算机,控制与光学等广泛交叉。

2 信号处理

信号处理技术是现代电子电气工程的基础。其中包括声音与语言信号的处理,图像与视频信号处理,生物医学成像与可视化,成像阵列与阵列信号处理,自适应与随时间变化的信号处理,信号处理理论,打规模集成电路体系结构,实时软件,统计信号处理,非线性信号处理与非线性系统标识,滤波器库与小波变换理论,无序信号处理,分形与形态信号处理。

3 计算机科学与工程

本方向研究领域非常宽广,包括计算机图形学,计算机视觉技术,口语系统,医学机器人,医学视觉,移动机器人学,应用人工智能,生物机器人及其模型。还包括医疗决策系统,计算机辅助自动化,计算机体系结构,网络与移动系统,并行与分布式操作系统,编程方法学,可编程系统研究,超级计算机技术,复杂性理论,计算与生物学,密码学与信息安全,分布式系统理论,先进网络体系结构,并行编辑器与运行时间系统,并行输入输出与磁盘结构,并行系统,分布式数据库和交易系统,在线分析处理与数据开采中的性能分析。

4 系统控制

此方向包括最优控制,多变量控制系统,大规模动态系统,多变量系统的识别,制造系统,最小最大控制与动态游戏,用于控制与信号处理的自适应系统,随机系统,线性与非线性评估的设计,随机与自适应控制等。

5 光子学与光学

此研究方向是电子电气专业的关键领域之一。本方向包括光电子学装置,超快电子学,非线性光学,微光子学,三位视觉,光通讯,X光与远紫外线光学,光印刷学,光数据处理,光通讯,光计算,光数据储存,光系统设计与全息摄影,体全息摄影研究,符合光数字数据处理,图像处理与材料光学特性研究。

6 电子学与集成电路

本领域包括微电子学与微机械学,纳米电子学,超导电路,电路仿真与装置建模,集成电路设计,大规模集成电路中的信号处理,易于制造的集成电路设计,集成电路设计方法学,A/D与D/A转换器,数字与模拟电路,数字无线系统,RF电路,高电子迁移三极管,雪崩光电管,声控电荷传输装置,封装技术,材料成长及其特征化。

7 电力技术

此方面主要包括电气材料学与半导体学,电力电子及装置,电机,电动车辆,电力系统动态及稳定性,电力系统经济型运行,实时控制,电能转换,高压电工程等等。

8 电磁学

包括卫星通讯,微波电子学,遥感,射电天文学,雷达天线,电磁波理论及应用,无线电与光系统,光学与量子电子学,短波激光,光信息处理,超导电子学,微波磁学,电磁场与生物媒介的互相作用,微波与毫米波电路,微波数字电路设计,用于地球遥感的卫星成像处理,子毫米大气成像辐射线测定,矢量有限元,材料电器特性测量方法,金属零件缺陷定位。

9 微结构

微结构作为微电子学的发源学科,现在又产生了另外一个新的重要的研究领域微机电系统。微机电系统是一个极端多学科交叉的领域,对于很多工程与科学研究领域都有十分重大的影响,尤其是在电气工程,机械工程和生物工程等方面。微机电的最基础的研究方面是微制备技术的加工知识,制造微笑结构的方。正是有了微电机系统技术我们才能够制造微米尺度电机,才能在一块硅晶片上制造纳米尺度扫描隧道显微镜,才能制作用于测量精细细胞活性的微迷宫。

10 材料与装置

电子电气材料及其装置是美国大学EE学科中重要的研究方向。这一学科包括光电子装置仿真,纳米结构电子学,半导体与微电子学,磁性材料/介电材料与光材料及其装置,固态物理及其应用,小型机械结构及其激励器,微机械与纳米机械装置,物理化学和生物感应器,装置物理学及其特征化,设备建模与仿真,纳米制备与新装置,微细加工,超导电子学等。

11 生物工程

生物与生命科学是新世界最为活跃的学科之一。而利用电子电气技术进行生物生命研究是目前世界的潮流。此方面包括生物仪器,生物传感器,计算神经网络,生物医学超声学,微机电系统,神经系统中信号的传递与编码,高能粒子与生命物质的相互作用,高能粒子束与高能X光在治疗肿瘤中的临床应用,医学成像,生物图像处理,磁共振成像,发射型计算机断层摄影术,超声成像,超声成像的三维重建,心脏成像的特征提取,神经微电子界面,血管内的成像,聋瞎病人感官辅助系统,盲人阅读机,自动语言识别等。